Słyszano że:

Podczas badań analizowano oddziaływanie ketoprofenu (KP) z albuminą surowicy krwi wołowej (BSA) w miejscu wysokiego powinowactwa w obecności kwasów tłuszczowych (KT) o stężeniu fiziologicznym. Aby oszacować mechanizm wiązania KP do BSA i interakcje między KP a KT o miejscu wiązania na cząsteczkę BSA, oprócz analizy jakościowej na podstawie krzywych wynoszenia, dokonano także analizy ilościowej stałych wiązania i wygasań (Kd i KD) w układzie podwójnym. Parametry wiązania porównywano także w zakresie temperatur T = 298 K – 313 K.

Wykazano, że zastosowany zakres temperatur nie wpływa znacząco na wiązanie KP do BSA. Bez względu na obecność KT zaobserwowano wygaszenie fluorescencji BSA w obecności KP, co związane jest z tworzeniem kompleksu KP-BSA w subdominii IIIA lub IIIB, IIIB. Ponieważ KT również mogą zajmować wspomniane miejsca wiązania leków na cząsteczkę albuminy, zasugerowano możliwość interakcji pomiędzy podanym lekiem a KT, zwłaszcza w przypadku stanów z podwyższoną zawartością KT, tj. hiperlipidemi.
Małgorzata Maciążek-Jurczyk, Katarzyna Engelking, Izabela Majnusz, Dariusz Maćczak

Stresem oksydacyjnym narażony przez układ oraz działanie jądra (RTF) z zdolnością do przeciwdziałania jego negatywnym skutkom. RTF, do których zalicza się m.in. wolne rodniki, powstają w organizmach żywych w prawidłowych procesach reakcyjnych, np. oddychanie komorowego czy też jako efekt uboczny działania wielu czynników metabolicznych. Znaczące zwiększenie ilości wolnych rodników może być wynikiem podziału komórki, który istnieje i rośnie się w organizmie. Stan ten obserwuje się między innymi w przemianie zaporowej, w przypadku chorób urodzeniowych, np. uraganu niesamowitego lub też jako efekt uboczny działania wielu czynników metabolicznych.

Ryc. 1. Widma absorpcyjne nasycone (HSA) oraz zmodyfikowane (oHSA) albuminy surowicy krwi (10^{-8} M).

Ryc. 2. Krzywe wygazu składów: a) LEF-SA, b) KP-SA, c) SDL-SA (LEF-SA 0.1 – 10; KP-SA 0.1 – 19; SLD-SA 0.1 – 5; \lambda_{nm} = 280 nm)

Ryc. 3. Zmodyfikowane krzywe Stern–Volmera w układach: a) LEF-SA, b) KP-SA, c) SDL-SA (LEF-SA 0.1 – 10; KP-SA 0.1 – 19; SLD-SA 0.1 – 5; \lambda_{nm} = 280 nm)

Ryc. 4. Krzywe Scatcharda w układach: a) LEF-SA, b) KP-SA, c) SDL-SA (LEF-SA 0.1 – 10; KP-SA 0.1 – 19; SLD-SA 0.1 – 5; \lambda_{nm} = 280 nm)

| Tab. 1. Porównanie wartości stałych asocjacji i wygazu dynamicznego w układach: a) LEF-SA, b) KP-SA, c) SDL-SA (LEF-SA 0.1 – 10; KP-SA 0.1 – 19; SLD-SA 0.1 – 5; \lambda_{nm} = 280 nm) |
|----------------------------------|----------------------------------|----------------------------------|
| \[\lambda = 280 \text{ nm} \] | \[\lambda = 280 \text{ nm} \] | \[\lambda = 280 \text{ nm} \] |
| Wartość stałej asocjacji \[K_a [M^{-1}] \] | Wartość stałej asocjacji \[K_a [M^{-1}] \] | Wartość stałej asocjacji \[K_a [M^{-1}] \] |
| \[\lambda = 295 \text{ nm} \] | \[\lambda = 295 \text{ nm} \] | \[\lambda = 295 \text{ nm} \] |
| HSA | 8.75\times10^9 | 5.30\times10^9 |
| oHSA | 5.48\times10^9 | 3.50\times10^9 |

Wnioski:
Analiza porównawcza widm absorpcyjnych wskazuje na wzrost absorbancji określonych w albuminie ludzkiej (oHSA) względem nasyconych (HSA) w przedziale 200-250 nm. Różnice te wynikają z zmiany struktury wiązań peptydowych w albuminie zmodyfikowanej. Ponadto obserwowano odbicie przebiegu widma absorpcyjnego obu albumin w zakresie 240-300 nm. W tym regionie odnosi się do zmian chemicznych i strukturalnych występujących w cząstecze albumin.

Można zauważyć, że wartości stałych asocjacji \[K_a [M^{-1}] \] oraz stałych wygazu dynamicznego \[K_d [M^{-1}] \] w obu rodzajach układów (leki, oksydant) są różnymi wartościami, co wskazuje na zmiany struktury wiązań peptydowych w albuminie zmodyfikowanej.

Można zauważyć, że stres oksydacyjny, jakim jest stres w chłodzeniu w trakcie chorych zapalnych zmienia strukturę wiązań peptydowych, co może skutkować wzrostem frakcji wolnej wewnątrz albuminy surowicy krwi i powodować inne reakcje.
Badanie wpływu temperatury na wiązanie niesterylidowych leków przeciwpalnych (NLPZ) do odluszczonej albuminy surowicy krwi wolowej (dBSA) techniką spektroskopii fluorescencyjnej

Małgorzata Maciążek-Jurczyk1, Dariusz Maćczak2, Izabela Majusz2, Justyna Kożak3, Agnieszka Koziol4, Anna Sułkowska1

1Katedra i Zakład Farmacji Fizycznej, Wydział Farmaceutyczny z Oddziałem Medycyny Lubelskiej, Śląski Uniwersytet Medyczny, mmaciazek@sum.edu.pl
2Koło Nonkowe przy Katedrze i Zakładzie Farmacji Fizycznej, Wydział Farmaceutyczny z Oddziałem Medycyny Lubelskiej, Śląski Uniwersytet Medyczny

ABSTRAKT

Większość leków jest transportowana we krwi jako kompleksy z białkiem. W czasteczkach albuminy znajdują się dwa podstawowe miejsca wiązania substancji endo- i egzogenowych, określone jako I i II miejsce wiązania wg nomenklatury Studowa. I miejsce wiązania jest stosunkowo duże i elektrycznie wiatre, zawiera tak duże cząsteczki jak bilirubina. W II miejscu wiązania zrywają się maśnie związane aromatyczne z bardziej obwodowo rozmiarowe, długie i tlenowe, wiąże zwięzłe, a także związane leki przeciwpalne (NLPZ), do których należy ketyfropen (KP). KP jest lekem blokującym aktywność COX-1 i COX-2. Wykazuje działanie przeciwpalowe, przeciwrzodawcze i przeciwpalne. Zastosowany został w reumatoidalnym zapaleniu stawów, w pierwotnym zestywaniu zapalenie stawów kręgowych, w zapaleniu stawów na skórze, zapalenia stawów w bolesnym nieskładaniu oraz w naczyńnikiach kolonii błony śluzowej. Celem badania było określenie wpływu temperatury (T = 298 K, T = 313 K) na wiązanie ketyfropenu do odluszczonej albuminy surowicy krwi wolowej (dBSA) metodą wygaziania fluorescencji. Rodzaj i siłę oddziaływania KP z dBSA badano poprzez monitorowanie zmian w widmie fluorescencji białka w obecności leków. Fluorografie albuminy (reszty tyrozynowe i tryptofanowe) zostały wzbudzone promieniowaniem o długości fali $\lambda_{ex} = 280$ nm i $\lambda_{ex} = 295$ nm. Zmiany stały są wygaszania K_{d} [M$^{-1}$] i asociacji K_{a} [M$^{-1}$] wyznaczenych za pomocą metody odpowiednio Sterna-Volmera i Scatcharda wskazują na wpływ temperatury na wiązanie lekiem (KP) do dBSA.

MATERIALY I METODY

Rozwary leków oraz białek zostały sprowadzone w butyrze fosforanowej 0,05 M, pH = 7,4 ± 0,1. Pomiary do przeprowadzono w temperaturach 298K, 303K, 310K i 313K. Analiza układu podwojonego lek-albumina w miejscach wysokiego powłoca wprawiona została przeprowadzona za pomocą techniki wygaziania fluorescencji odluszczonej albuminy surowicy krwi wolowej (dBSA) w obecności ketyfropenu (KP). Pomiary fluorescencji albumyny wykonano na jednowybramkowym spektrofotometrze Kontron SPM-25 Instrument AG. Do wzbudzenia fluorescencji dBSA zastosowano promieniowanie o długości fali $\lambda_{ex} = 280$ nm (wzbudzenie reszty tyrozynowej i tryptofanowej) i $\lambda_{ex} = 295$ nm (wzbudzenie reszty tryptofanowej). Używano kwariances kwietrver, o pojemności 4 cm3 i wymiarach 1 cm x 1 cm x 4 cm. Określono oznaki parametrow stosowanych w trakcie pomiarów: oznaki rekonstrukcji widmo emisyjnego: 280 nm ± 40 nm lub 295 nm ± 40 nm, zmoczenie oznacza: H = 550 V, szerokość skracaenia: 100 nm, szerokość szczeliny: 5nm/5nm. Do pomiarów w układzie lek-albumina wykorzystano roztwory albuminy surowicy krwi wolowej (dBSA) o jednakowych stężeniach koncentrowych, bez i w obecności ketyfropenu o równej koncentracji. Ostateczne stężenia przygotowanych roztworów w układach lek-albumina wynoszą: [dBSA] = 10$^{-4}$ M, [KP] = 10$^{-5}$ M; (H) = 10$^{-4}$ M; (S) = 10$^{-4}$ M. Z pomocą zmodyfikowanego przez Hirsutka równania Scatcharda oraz zmodyfikowanego przez Lehrecta równania Sterna-Volmera wyznaczono odpowiednio stałą assocjacji K_{d} [M$^{-1}$] oraz stałe wygaszania K_{d} [M$^{-1}$].

Tabela 1. Zmiany wartości stałych asociacji w zależności od długości fali wzbudzenia oraz temperatury
dBSA

<table>
<thead>
<tr>
<th>Temperatura (K)</th>
<th>$\lambda_{ex} = 280$ nm</th>
<th>$\lambda_{ex} = 295$ nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T = 298$ K</td>
<td>$K_{a} = 0,30 \times 10^{-1}$ [M$^{-1}$]</td>
<td>$K_{a} = 0,22 \times 10^{-1}$ [M$^{-1}$]</td>
</tr>
<tr>
<td>$T = 303$ K</td>
<td>$K_{a} = 0,26 \times 10^{-1}$ [M$^{-1}$]</td>
<td>$K_{a} = 0,22 \times 10^{-1}$ [M$^{-1}$]</td>
</tr>
<tr>
<td>$T = 310$ K</td>
<td>$K_{a} = 0,30 \times 10^{-1}$ [M$^{-1}$]</td>
<td>$K_{a} = 0,26 \times 10^{-1}$ [M$^{-1}$]</td>
</tr>
<tr>
<td>$T = 313$ K</td>
<td>$K_{a} = 0,26 \times 10^{-1}$ [M$^{-1}$]</td>
<td>$K_{a} = 0,23 \times 10^{-1}$ [M$^{-1}$]</td>
</tr>
</tbody>
</table>

Tabela 2. Zmiany wartości stałych wygaszania w zależności od długości fali wzbudzenia i temperatury

dBSA

<table>
<thead>
<tr>
<th>Temperatura (K)</th>
<th>$\lambda_{ex} = 280$ nm</th>
<th>$\lambda_{ex} = 295$ nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T = 298$ K</td>
<td>$K_{d} = 0,22 \times 10^{-1}$ [M$^{-1}$]</td>
<td>$K_{d} = 0,18 \times 10^{-1}$ [M$^{-1}$]</td>
</tr>
<tr>
<td>$T = 303$ K</td>
<td>$K_{d} = 0,24 \times 10^{-1}$ [M$^{-1}$]</td>
<td>$K_{d} = 0,27 \times 10^{-1}$ [M$^{-1}$]</td>
</tr>
<tr>
<td>$T = 310$ K</td>
<td>$K_{d} = 0,26 \times 10^{-1}$ [M$^{-1}$]</td>
<td>$K_{d} = 0,26 \times 10^{-1}$ [M$^{-1}$]</td>
</tr>
<tr>
<td>$T = 313$ K</td>
<td>$K_{d} = 0,26 \times 10^{-1}$ [M$^{-1}$]</td>
<td>$K_{d} = 0,19 \times 10^{-1}$ [M$^{-1}$]</td>
</tr>
</tbody>
</table>

Tabela 3. Zmiany wartości entalpii swobodnych w zależności od długości fali wzbudzenia i temperatury

dBSA

<table>
<thead>
<tr>
<th>Temperatura (K)</th>
<th>$\lambda_{ex} = 280$ nm</th>
<th>$\lambda_{ex} = 295$ nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T = 298$ K</td>
<td>$\Delta G = 25,52 \times 10^{-4}$ [kJ/mol]</td>
<td>$\Delta G = 25,16 \times 10^{-4}$ [kJ/mol]</td>
</tr>
<tr>
<td>$T = 303$ K</td>
<td>$\Delta G = 25,59 \times 10^{-4}$ [kJ/mol]</td>
<td>$\Delta G = 25,16 \times 10^{-4}$ [kJ/mol]</td>
</tr>
<tr>
<td>$T = 310$ K</td>
<td>$\Delta G = 25,68 \times 10^{-4}$ [kJ/mol]</td>
<td>$\Delta G = 25,16 \times 10^{-4}$ [kJ/mol]</td>
</tr>
<tr>
<td>$T = 313$ K</td>
<td>$\Delta G = 25,59 \times 10^{-4}$ [kJ/mol]</td>
<td>$\Delta G = 25,33 \times 10^{-4}$ [kJ/mol]</td>
</tr>
</tbody>
</table>

WNIOSKI

- Zmiany stałych wygaszania K_{d} [M$^{-1}$] i asociacji K_{a} [M$^{-1}$] wyznaczonych za pomocą metody odpowiednio Sterna-Volmera i Scatcharda wskazują na wpływ temperatury na wiązanie ketyfropenu (KP) do dBSA.
- Ze wzrostem temperatury zaznaczono wzrost wygaszania fluorescencji. W zakresie temperatur $T = 298$ K – $T = 313$ K obserwowano wzrost wartości stałej wygaszania – znaczny przy długości fali $\lambda_{ex} = 280$ nm. Zjawisko to wskazuje na udział w wiązaniu leków do białek w obecności ketyfropenu i tryptofanowej w ciągłości. Ia (moc) i tryptofanowej w obiektach substancjach IIa (moc) i IIIa (moc).
- Wzrost wartości stały wygaszania wskazuje na spadek odporności między lekiem a wzbudzonym fluoresorem w białku.
- Wymiarów wartości α oraz K_{a} wskazują na zależność między wzrostem ilości cząsteczek leku przypadającą na jedną cząsteczkę dBSA.
- Wzrost wartości stały wygaszania oznacza wzrost stopnia powinowactwa leku do białka.
BADANIE INTERAKCJI LEKÓW PRZECIWREUMATYCZNYCH Z ALBUMINĄ SUROWICY KRWI METODĄ SPEKTROSKOPII FLUORESCENCYJNEJ

Katedra i Zakład Farmacji Fizycznej, Wydział Farmaceutyczny z Oddziałem MedycynyLaboratoriowej, Śląski Uniwersytet Medyczny, Jagiellońska 4, 31-200 Kraków, Poland, m.maciazek@sum.edu.pl

Department of Environmental Chemistry and Technology, Institute of Chemistry, University of Silesia, Sosnowa 9, 40-006 Katowice, Poland

Abstract: Jednoczesne stosowanie wielu leków w farmakoterapii różnego rodzaju chorób, również przewlekłych, jest obecnie powszechnie praktykowane i wynika przede wszystkim z postępu wiedzy medycznej oraz rozwoju współczesnej farmakologii. Leki przeciwrheumatyczne stosowane w terapii wielokrotnych (skierowanej) reumatoidalnego zapalenia stawów (RZS) mogą podwyszyć skuteczność leczenia procesów zapalnych i umożliwić uzyskanie szybszej poprawy stanu zdrowia chorych. Niestety wiąże się to z ryzykiem interakcji między nimi i nieprzewidywalnym zwiększaniem ich toksyczności.

Cel pracy było zbadanie kompetencyjność pomiędzy dwoma lekami zalecanymi w terapii chorób reumatoidalnych – lefleumidem (LEF) i metotrexatem (MTX) w wiązaniu z ludzką (hSA) i wołowej albuminą surowicy krwi (BSA), w miejscu wysokiego powinowactwa, za pomocą metody wygaszania fluorescencji. Wyznaczono stałe wygaszenia \(K \sp{\text{M}} \sp{\text{LEF}} \) i \(K \sp{\text{M}} \sp{\text{MTX}} \) w układach podwójnych LEF-albumin surowicy krwi (SA), MTX-albumin surowicy krwi (SA) oraz potrójnych LEF-MTX-albumin surowicy krwi (SA). Analiza wpływu dodatkowego leku (LEF lub MTX) na wiązanie do albuminy krwi opiera się na porównaniu krzywych wygaszenia i stadiów wiązania dla poszczególnych układów LEF-SA, MTX-SA, LEF-MTX-SA. Badanie kompetencji pomiędzy LEF a MTX w tworzeniu kompleksu z albuminą surowicy krwi potwierdziło zmienną powierzchnię LEF i MTX względem miejsca wiązania w cząstkach makromolekulę w obecności dodatkowego leku, co jest wskazaniem do zastosowania terapii terapii montażowej [1].

Materiały i Metody:

Roztwór leków oraz biały zostały sporządzane w buforze fosforanowym 0.05M o pH 7,4 ± 0,1 (w wodzie destylowanej). Wszystkie pomiaru przeprowadzono w temperaturze 310K. Analiza układu podwójnego lek-albumina w miejscu wysokiego powinowactwa została przeprowadzona za pomocą techniki wygaszania fluorescencji albuminy wołowej i ludzkiej. Pomiaru fluorescencji albuminy wykonano na jednowyjadowym spektrofotometrze Hitachi F-2500. Do wzbudzenia fluorescencji hSA i BSA zastosowano promieniowanie o długości fali 280nm (wzbudzenie grup triptofanowych i tryptofanowych) i 295nm (wzbudzenie grup tryptofanofowych). Użyto kwazaruowych kiszy o pojemności 4cm³ i wymiarach 1 cm x 1 cm. Określenie zakresu parametrów stosowanych w trakcie pomiarów: zakres rejestracji węgla emisyjnego 200nm-400nm lub 295nm-400nm, wzmocnienie sygnałów +550V, szybkość skanowania 100nm/min, szerokość szacunku 5nm. Do pomiarów w układzie lek-albumina wykorzystano roztwory roztworów albuminy krwi ludzkiej (hSA) i wołowej (BSA) o jednakowym stężeniu kwasowym, bez i w obecności odpowiednich leków o rządzie stopień koncentracji końcowej. Kwasowe stężenia przygotowywanych roztworów w układach lek-albumina oraz lek-lek-albumina wynosiły: [SA] [SA-BSA]=2 x 10^{-7} M, [LEF]=10^{-7}M-10^{-1} M, [MTX]=10^{-8}M-10^{-10} M.

Wyznaczono stałe wiązanie \(K \sp{\text{M}} \sp{\text{LEF}} \) lek-albumina i lek-lek-albumina oraz średnią liczbę „n” moli leku związanego z jednym molem albuminy. Wykorzystano zmiodyfikowaną przez Hiratsuka metodę Scatcharda. Stale wygaszenia \(K \sp{\text{M}} \sp{\text{LEF}} \) fluorescencji albuminy wyznaczono za pomocą zmiodyfikowanego przez Leitena równania Stern-Volmera.

Krzywe wygaszania albuminy surowicy krwi (SA) w układzie a) podwójnym LEF-SA i potrójnym LEF-SA-MTX(const); b) podwójnym LEF-SA i potrójnym MTX-SA-LEF(const). λ_ex=280nm, (w insertach λ_em=295nm), T=310K

Krzywe Scatchard (n[LEF] (Lmol)/[BSA]) wyznaczono dla układu a) potrójnego LEF-SA w obecności MTX; b) potrójnego MTX-SA w obecności LEF. λ_ex=280nm, 295nm (w insertach λ_em=295nm), T=310K

Wnioski:

W trakcie badań kompetencji leków z albuminą w miejscu wysokiego powinowactwa analizowano wpływ leków, oraz leków, w układach lek-lek-albumina na powstawanie kompleksów odpowiednio lek-albumina i lek-lek-albumina. Aby ocenić kompetencyjność wiązania leków do albuminy surowicy krwi, spróbaly analizy jakościowej na podstawie krzywych wygaszania, dokonano analizy ilościowej staticznych wiązania i wygaszania (\(K \sp{\text{M}} \sp{\text{LEF}} \) i \(K \sp{\text{M}} \sp{\text{MTX}} \)) w układach potrójnych i porównano z wynikami dotyczącymi układów podwójnych.

Na podstawie porównywań krzywych wygaszania w układach potrójnych z układami podwójnymi stwierdzono, że w układach LEF-SA-MTX (const) obecność MTX prawdopodobnie utrudnia transfer energii pomiędzy wzbudzanym fluorescencją w cząsteczkę albuminy a cząstką LEF. Podczas gdy w układzie MTX-SA-LEF (const) wpływ LEF na zwiększenie trwałości układu. Analiza ilościowa parametrów wiązania wyznaczonych w układach LEF-SA-MTX (const) potwierdziła konkurencję o miejsce wiązania zarejestrowano obniżenie wartości staticznych wygaszenia (przyczynę odległości między lejkami a wzbudzonym fluorescentm w białku) oraz ilościowej (prawdopodobieństwo wparcia leku pierwszego z kompleksu). Wyznaczone w układzie MTX-SA-LEF(const) stałe wiązania nie potwierdzały konkluzji dotyczących wpływu LEF na wzrost powinowactwa MTX względem miejscu wiązania. Znajdowisko to prawdopodobnie jest związane z tym, że częściowo wiązania wyznaczone dla układu potrójnego MTX-SA pochodzą z danymi literaturnych [2], gdzie zastosowano albuminę z innym pochodzeniem [3].

W wyniku oddziaływania z dodatkowym lekiem w układach LEF-SA-MTX (const) i MTX-SA-LEF(const) nastąpiło prawdopodobnie złużenie konfiguracji białka, co mogło spowodować zmiany w dobrej kololedze leku dla wzbudzanych fluoroforów. Różnorodność miejsc wiązających oraz mechanizm jakie towarzyszą tworzeniu kompleksów m.m kompetencji, wskazują na bardzo istotną rolę terapii montażowej, jaką należy wdrożyć podczas terapii wielokrotnych chorób reumatycznych.

3. A.A. Bhattacharyya A, Curry S. et al., J. Biol. Chem., 275, 2000, 38731-38738

4. nierozm. do wyznaczenia.

7. A.A. Bhattacharyya A, Curry S. et al., J. Biol. Chem., 275, 2000, 38731-38738
THE EFFECT OF GLYCATION ON TERTIARY STRUCTURE OF HUMAN SERUM ALBUMIN IN TERMS OF ITS BINDING PROPERTIES

A. Szkudlarek, M. Maciąg-Jurczyk, K. Korusiewicz, M. Magielsnicki, A. Makielak, A. Mokshaha-Zarzycki, A. Sulkowska

Medical University of Silesia, School of Pharmacy with the Division of Laboratory Medicine, Department of Physical Pharmacy, Jagiellońska 4, 41-200 Sosnowiec, Poland. aszkudlarek@sum.edu.pl

Among numerous roles of human serum albumin (HSA), binding and transport of many compounds represent important biological functions, which could be affected by multistep process known as non-enzymatic glycation. In this work an effect of HSA glycation on the binding affinity towards tolbutamide (TB) and losartan (LOS) was estimated.

Tolbutamide is an oral hypoglycemic drug that was formerly used in treatment of diabetes type 2. It is a substrate of OPR2D6 and it is bound with plasma protein in 91-96%.

Losartan is an angiotensin II receptor (AT1) blocker used in hypertension (1° line with a coexisting diabetes) and diabetic nephropathy. LOS is a substrate of OPR2D6 and is bound with plasma protein in 98.7-99.8%.

Fluorescence measurements:

The fluorescence spectra were recorded with a Jasco FP-6500 spectrofluorometer using 1 x 1 cm quartz cell. The synchronous (Δλ 15 and 60 nm) spectra of non-modified (HSA) and glycated albumin (gHSAglyc) were recorded. Albumins were titrated in binary and ternary systems with TB (final [TB]:[LOS] molar ratio 10:1; and/or LOS (final [LOS]:[HSA] molar ratio 20:1) to study the fluorescence quenching of HSA and gHSAglyc. All measurements were performed at 310 K.

Table 1. The association Kq [M⁻¹] and Stern-Volmer KSV [M⁻¹] constants were calculated on the basis of Scatchard, Klotz and modified Stern-Volmer method.

<table>
<thead>
<tr>
<th>gHSAglyc</th>
<th>HSA</th>
<th>TB-HSA</th>
<th>TB-gHSAglyc</th>
<th>TB-LOS</th>
<th>TB-LOS-gHSAglyc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kq 278 nm</td>
<td>Kq 295 nm</td>
<td>KSV 278 nm</td>
<td>KSV 295 nm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The loss of fluorescence intensity in glycated human serum albumin indicates that the local environment of Trp-214 and Tyr residues is altered by glycation.

With increasing concentration of TB, the decrease of HSA fluorescence was observed (Fig. 5). The quenching curves at λmax 275 and 295 nm have a different course, which means that TB-albumin complexes are formed involving Trp-214 and Tyr residues (subdomains IIIA and/or IIIB, IIIA). More intense fluorescence quenching at λmax 295 nm may indicate the easier access of the quencher (TB) to Trp-214. These phenomena were observed regardless of glycation. Similar changes in the fluorescence intensity were observed in the presence of LOS (Fig. 6). Observed changes occurred regardless of glycation, which indicates that LOS shows affinity to the same subdomains as TB.

CONCLUSIONS

Changes in binding parameters, such as association Kq or Stern-Volmer KSV constants, suggest that glycation significantly increases the affinity of LOS and TB to albumin and affects interactions between these drugs and HSA. These phenomena may influence the pharmacokinetics of these drugs, thus monitored pharmacotherapy is reasonable in case of polypharmacy of the diabetes and the hypertension.

Fig. 1. The structure of tolbutamide (TB), 1-Butyl-3-(4-methylphenylsulfonyl)urea.

Fig. 2. The structure of losartan [LOS, 2-Butyl-4-chloro-1-{[2-(5H-tetrazol-5-yl)furan-3-yl]-1-biphenyl-4-yl}-methyl]-[1H-imidazole-5-methanol monopotassium]

Fig. 3. Tertiary structure of human serum albumin (HSA) with the location of main glycation sites.

Fig. 4. Effect of glycation on synchronous fluorescence spectra of HSA and gHSAglyc.

The loss of fluorescence intensity in glycated human serum albumin indicates that the local environment of Trp-214 and Tyr residues is altered by glycation.

Fig. 5. Quenching curves of HSA in the presence of TB (1 x 10⁻⁶ - 1 x 10⁻⁴ M). [TB]:[HSA] 20:1 (in the inset quenching curves of gHSAglyc in the presence of TB), λmax 275 and 295 nm.

Fig. 6. Quenching curves of HSA in the presence of LOS (5 x 10⁻⁶ - 5 x 10⁻⁴ M). [LOS]:[HSA] 10:1 (in the inset quenching curves of gHSAglyc in the presence of LOS), λmax 275 and 295 nm.

Fig. 7. Quenching curves of gHSAglyc in the binary system with LOS (5 x 10⁻⁶ - 5 x 10⁻⁴ M) and in the ternary system with LOS (5 x 10⁻⁶ - 5 x 10⁻⁴ M) in the presence of TB (1 x 10⁻⁴ - 1 x 10⁻¹ M) in the inset quenching curves of the binary system with TB (1 x 10⁻⁴ - 1 x 10⁻¹ M) and in the ternary system with TB (1 x 10⁻⁴ - 1 x 10⁻¹ M) in the presence of LOS (5 x 10⁻⁶ - 5 x 10⁻⁴ M), λmax 295 nm.

Stronger quenching in the binary than in ternary systems was observed (Fig. 7), which suggests the mutual displacement of LOS and TB from LOS-gHSAglyc and TB-gHSAglyc complexes, respectively.

*) SD - standard error
Wpływ kwasów tłuszczowych na powstawanie produktów glikacji ludzkiej albuminy surowicy krwi

Albumina surowicy krwi ludzkiej (HSA) będąca głównym białkiem osocza, pełni wiele kluczowych funkcji w utrzymaniu homeostazy ustrójstwo m.in. posiada zdolność transportu do tkanek docelowych wielu związków biologicznie czynnych przez wiązanie licznych substancji endo- i egzogennych (witamin, metabolitów, barwników, kwasów tłuszczowych, leków, jonów metali). Jednym z procesów powodujących utratę pierwotnych właściwości albuminy jest nasilenie w stanie hiperiglikemicznym glikacji. Związki powstałe w końcowym etapie tego procesu - (AGE's - Advanced Glycation End-products) – odgrywają dominującą rolę w rozwoju przewlekłych powikłań cukrzycowych o charakterze mikro- i makroangiopatii, czy też procesów degeneracyjnych związanych z wiekiem. Wobec postrzeżeń sugerujących udział AGE's w etiopatogenezie wielu chorób, zahamowanie tworzenia AGE's poprzez zastosowanie inhibitorów jest obiecującym celem terapeutycznym.

Wykorzystując technikę spektroskopii fluorescencyjnej zbadano wpływ kwasów tłuszczowych na powstawanie końcowych produktów glikacji.

Ryc. 2 Emisyjne widma fluorescencji produktów glikacji ludzkiej albuminy surowicy krwi, wolnej, odtłuszczonej ((af)HSA, (af)gHSAFRC) oraz nasyconej kwasami tłuszczowymi (HSA, gHSAFRC), λem 335 nm, [HSA, (af)HSA, gHSAFRC, (af)gHSAFRC] 5 x 10^{-6} mol/dm³, T = 37°C.

Glikacja albuminy (af)HSA - fabrycznie odtłuszczoną, przebiega silniej w porównaniu do albuminy zawierającej kwas tłuszczowy (HSA). Wyznaczono iloraz fluorescencji AGE's (af)gHSAFRC/FRC dla maksimum emisji albuminy glikowanej i nieglikowanej, wolnej od kwasów tłuszczowych (af)HSA jest ~ 3.5-krotnie większe w porównaniu do FgHSA/FRC albuminy zawierającej kwas tłuszczowy.

Ryc. 3 Fluorescencja AGE's albuminy (af)gHSAFRC zarejestrowana w trybie synchronicznym i wzbudzeniowym wzrostu odpowiednio 3.5-krotnie i 3-krotnie względem intensywności fluorescencji AGE's albuminy gHSAFRC.

Ryc. 1 Miejsca glikacji in vivo w strukturze HSA a) reszty lizyny (Lys), b) reszty argininy (Arg). Wizualizację struktury HSA przeprowadzono przy użyciu programu CLC Drug Discovery Workbench. Strukturę HSA pobrano z bazy danych PDB, ID: 4K2C.

Znacznym wzrost intensywności fluorescencji AGE's albuminy pozbawionej kwasów tłuszczowych może wynikać z faktu, iż czynnikiem silnie wpływającym na szybkość glikacji HSA jest dostępność grupy ε-aminowej reszt lizyny (głównie Lys-525), które w warunkach in vitro prawdopodobnie przyspieszone są przez cząsteczki kwasu tłuszczowego, przez co nie ulegają glikacji.

Kwasy tłuszczowe hamują tworzenie się końcowych produktów glikacji HSA – wykazują charakter inhibitora glikacji białek. Zwiększenie ilości kwasów tłuszczowych dostarczanych do organizmu wraz z dietą bądź w postaci suplementów może zmniejszyć częstość występowania lub/i nasilenie powikłań w przebiegu m.in. nefropatii, neuropatii, retinopatii czy choroby Alzheimera.
Spektroskopowa analiza wiązania losartanu do albuminy surowicy krwi ludzkiej w stanach hiperglikemii

Agnieszka Szkudlarek-Łańnik1, Klaudia Korusiewicz, Mariusz Mogieliński2, Aleksandra Makielak1, Magdalena Loboziak2
Anna Pawlak3, Adam Mokshahar-Zarzycki4, Anna Sułkowska1
1 Śląski Uniwersytet Medyczny w Katowicach, Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej, Katedra i Zakład Farmacji Fizycznej
2 Studentische Koö Operative Katedra und Arbeitsgruppe für Pharmazie, Universität Stuttgart
3 Uniwersytet Opolski, Wydział Nauk o Środowisku, Katedra i Zakład Farmacji Fizycznej
4 Silesian University of Technology, Faculty of Pharmacy, Laboratory of Pharmaceutical Sciences

Albumina surowicy krwi ludzkiej (HSA) jako podstawowe białko osacza wiele kluczowych funkcji w organizmie, m.in. odpowiada za utrzymanie prawidłowego ciśnienia otoczenia krwi i pH osczulej, jest głównym białkiem transportującym, gdyż posiada zdolność wiazania szerokiego zakresu cząsteczek i czynników, co znacząco utrzymuje pH osczulej. Wszelkie zmiany w fazach oszczulania, które mogą wpływać na zdolność wiazania, są źródłem potencjalnych anormalności fiziologicznych, takich jak hiper- lub hipoglikemia.

Losartan (LOS) - lek z grupy antagonizatorów receptorów angiotensyn II (AT1 - Sartone) stosowany w terapii pierwszego stopnia nadeścienia tętniczego, neprózach wytwarzania, jako skuteczna leczenie przeciwdziśniczeń oraz jako alternatywny środek leczenia przewlekłych niewydolności serca.

Cel pracy
Cel pracy polegał na badaniu i analizie oddziaływania losartanu (LOS) na albuminę ludzką (HSA) w fazach hiper- i normoglikemicznych.

Metodyka badań
Wykorzystywano technikę analizy widmowej do badania fluorometrycznego. Fluorometra JASCO FP-6500, w podwyższonym zakresie temperatury (37°C). Uzyskane dane poddawano wykreśleniu krzywych Serna-Volmera w modulacji Lehnara oraz krzywych Klotza, z których wyznaczano stałe Serna-Volmera (K_0 [M⁻¹]) oraz stałe wzmocnienia (K [M]), które w zależności od metody postępowania mogą się różnić. Wizualizacja chromatogramów i diagramów ilustrowała wizualną interpretację badanego procesu w fazach oszczulania.

Wykazano obniżenie intensywności fluorescencji wzbudzonych fluoroforów w fazach hiper- i normoglikemicznych. W badaniach zastosowano promieniowanie o długości fali 276 nm do wzbudzenia fluorescencji albuminy w cząsteczkach i wizualizacji procesu w fazach oszczulania.

Tabela 1. Stale Serna-Volmera (K_0 [M⁻¹]) i makusa maksymalnej fluorescencji (f_0) w fazach hiper- i normoglikemicznych (w dendrologii, gdzie f_0 = 0.9893, K_0 = 6.73, K = 0.49, f_0 = 0.9867).

<table>
<thead>
<tr>
<th>Metoda Serna-Volmera</th>
<th>(K_0 \times 10^6 [M])</th>
<th>(f_0)</th>
<th>(R^2)</th>
<th>(f_0)</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS</td>
<td>4.09</td>
<td>0.966</td>
<td>0.9981</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOS-gHSA_sgl</td>
<td>1.01</td>
<td>0.9964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metoda Klotza</td>
<td>(K_0 \times 10^5 [M])</td>
<td>(n)</td>
<td>(K_0 \times 10^5 [M])</td>
<td>(n)</td>
<td>(R^2)</td>
</tr>
<tr>
<td>LOS</td>
<td>6.73</td>
<td>0.9882</td>
<td>5.05</td>
<td>0.9964</td>
<td></td>
</tr>
<tr>
<td>LOS-gHSA_sgl</td>
<td>0.49</td>
<td>0.9967</td>
<td>0.22</td>
<td>0.9980</td>
<td></td>
</tr>
</tbody>
</table>

Glikacja galaktrozy (GAL) ludzkiej albuminy surowicy krwi w warunkach in vitro:
- wpływa na zmianę hydrofilności mikroscopii reszty tryptofanowej (Trp-214) i reszty tryptofanowej HSA (Ryc. 3)
- na tyle zmienia strukturę HSA, że zwraca oddziaływanie losartanu (Ryc. 4b, wersja)
- powoduje utratę specyficzności miejsca wiązania LOS w strukturze HSA (Ryc. 4b, wersja)

Ponownicie losartanu do modyfikowanego białka (gHSA_sgal) zmało.
Zastosowanie zbyt dużej dawki losartanu w stanach hiperglikemii może prowadzić do wystąpienia skutków ubocznych farmaceutyku.
Badanie oddziaływania glikazydów z glikowaną i niezmienioną albuminą w krwi ludzkiej metodą spektroskopii fluorescencyjnej

Agnieszka Szkudiarek-Łośniki, Małgorzata Maciążek-Jurczyk, Joanna Równicka-Zubik, Justyna Kozak, Anna Sulikowska
Katedra i Zakład Farmacji Fizycznej, Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej, Śląski Uniwersytet Medyczny w Katowicach, mnciazeck@sum.edu.pl
Koło Naukowe przy Katedrze i Zakładzie Farmacji Fizycznej, Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej, Śląski Uniwersytet Medyczny w Katowicach

Materiały i Metody

Rozwarty niemieniony (HSA) oraz glikowany, w obecności 0,05 M glukozy (ghSA) uboczny surowicy krwi ludzkiej z £tężeniem 2 x 10^-4. Mieszano w 0,05 M buforze TRIS – HCl (pH = 7,4 ± 0,1). Wyżwyczaj roztwór glikazydów (GLC) o £tężeniu 2 x 10^-3 M z powołaniu w metanolu. Pomiar przeprowadzono po 21 dniach inkubacji próbki w temperaturze rat 37°C. Analiza wpływu glikazydów na oddziaływanie glikazydów z albuminą surowicy krwi ludzkiej została przeprowadzona po pomocy, techniki wygaszania fluorescencji. Pomiar fluorescencji wykonano na spektrofluorometrze JASCO FP-6300, przy użyciu standardowych kwiet lękowych o pojemności 4 cm x 1 cm x 4 cm. Fluorescencję widma emisyjnego gHSA i HSA, bez i w obecności wzmacniającego £tężenia leku (x = 10^-4 M = 40 x 10^-3 M), zarejestrowano przy wzmacnieniu promieniowaniu o długości fali λ = 275 nm (wzbudzenie grup tryptofanowych i tyrozynowych) oraz λ = 295 nm (wzbudzenie grup tryptofanowych). Określono zakres parametrów stosowanych w trójkę promieni; zakres regułacji widnia emisyjnego przy λ = 275 - 400 nm oraz λ = 295 - 400 nm. Pomiary fluorescencji w glikowanej i niezmienionej albuminie.✿

Wykorzystując metodę spektroskopii fluorescencyjnej przeprowadzono analizę oddziaływań glikazydów (GLZ).

1. Trójrytmio krzywa stabilnej albuminą surowicy krwi ludzkiej (HSA).
2. Wykazano obniżenie intensywności fluorescencji wzbudzonych fluoroforów w HSA i gHSA względem ze wzmacnieniem ze stężeniem GLZ.
3. Uzyskane dane pozwoliły do wykrycia krzywych Sterona-Volmera oraz krzywych Scatcharda, z których wyznaczono stałe współczynniki dynamicznych (K^'1, 2, 3), umowne maksima wartości dystrybucji fluorescencyjnej (f_x) oraz stałe sąsiadujących (k_0) dla kompleksów ligand-biało (GLZ-HSA i GLZ-gHSA).

Wnioski

1. Na podstawie analizy oddziaływań techniką spektrofluorometryczną udowodniono tworzenie się kompleksów GLZ-gHSA i GLZ-gHSA dla struktury malowego (GLZ) (HSA i gHSA) [201 (Ryc. 3)]
2. Wysokie wartości stanowych wygaszania K^'1, 2, 3 (K^'1, 2, 3) i stanowych F_x (F_x) £walej o tym, że glikazydy działają na stężenia wczesnego starzenia organizmu;
3. Glikazyd lokuje surowicę fluoroforów w cząsteczkę glikowanej albuminy surowicy krwi ludzkiej (gHSA_k2, gHSA_k2, HSA_k2, HSA_k2) oraz typy silnie i trudno kompleksa z gHSA (HSA_k2, gHSA_k2, HSA_k2)

Glikazyd wpływał na zmianę konformacji albuminy, ułatwiając wiązanie glikazydu przez albuminę.

Zwiększenie frakcji GLZ związanego ze zbiornika prowadzi do spadku stężenia tego leku

![Badania oddziaływania glikazydów z glikowaną i niezmienioną albuminą w krwi ludzkiej metodą spektroskopii fluorescencyjnej.](image-url)